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Sentence compressionSentence compression

 sentence compression (reduction): 
summarizing a single sentence by removing information 
from it (Jing & McKeown, 2000)

 compressed sentence should retain most important 
information and remain grammatical

 applications include

 as part of a full-blown text summarization system
 automatic subtitling
 displaying text on handheld devices



Compression as deletionCompression as deletion

 sentence compression as deletion:
drop any subset of words from the input sentence while 
retaining important information and grammaticality
(Knight & Marcu, 2002)

 Two important properties

 only deletions are allowed, no substitutions or 
insertions, and therefore no paraphrasing

 word order is fixed
 Deletion models satisfy the subsequence constraint:

words of the compressed sentence must be a 
subsequence of the input sentence



Deletion modelsDeletion models

 Deletion models can be automatically learned from text 
corpora (Knight & Marcu, 2002)

 probabilistic noisy channel model

 shift-reduce parser + decision tree model

 Most follow up work on data-driven sentence 
compression adheres to the subsequence constraint 
(Minh Le & Horiguchi, 2003; Vandeghinste & Pan, 2004; Turner & Charniak, 2005; 
Clarke & Lapata, 2006; Zajic et al., 2007; Clarke & Lapata, 2008)



Is sentence compression an NLG task?Is sentence compression an NLG task?

 Though it is a form of text-to-text generation,
there is no real generation component in deletion 
models

 Is sentence compression therefore not  an NLG task?



Is sentence compression an NLG task?Is sentence compression an NLG task?

 Intuitively, the subsequence constraint seems a 
(convenient) over-simplification

 We suspect that in reality sentence compression 
requires:

 transformations beyond word deletions
 linguistic knowledge and resources typical to 

NLG
 To find out, we studied “real-life” sentence compression 

in the domain of subtitling



OverviewOverview

1.  Introduction: sentence compression

2.  Material: subtitle corpus

3.  Analysis: observed compression phenomena

4.  Summary / Discussion
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Material: domainMaterial: domain

 source: subtitles from news broadcasts of the Dutch 
public television channel

 presentation space is limited:

 690 – 780 chars/minute

 subtitles cannot be verbatim transcription

 subtitles are often compressed form of original

 a form of parallel text:

 aut: autocue text
 sub: subtitle text
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Material: preprocessingMaterial: preprocessing

 Subtitle corpus originally collected for studying 
automatic subtitling (Vandeghinste & Tsjong Kim Sang, 2004)

 automatically tokenized

 automatically aligned at sentence level

 sentence alignments manually checked
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Material: further processingMaterial: further processing


 subtitle corpus has become part of DAESO corpus

 monolingual treebank of parallel/comparable Dutch 
text  (Marsi & Krahmer, 2007)

 all sentences syntactically parsed

 syntax trees manually aligned

 alignment of similar syntactic nodes
 labeled with semantic similarity relations

 current work only uses the word alignments
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Material: aligned treesMaterial: aligned trees
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Material: alignment degreeMaterial: alignment degree

 alignment degree: number of other sentences that a 
sentence is aligned to

Degree Autocue (%) Subtitle (%)

0 3607 20.74 12542 46.75

1 12382 71.19 13340 49.72

2 1313 7.55 901 3.36

3 83 0.48 41 0.15

4 8 0.05 6 0.02
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Material: alignment degreeMaterial: alignment degree

 almost half of the subtitles has no corresponding 
autocue because

 in a foreign language
 live interviews

Degree Autocue (%) Subtitle (%)

0 3607 20.74 12542 46.75

1 12382 71.19 13340 49.72

2 1313 7.55 901 3.36

3 83 0.48 41 0.15

4 8 0.05 6 0.02
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Material: alignment degreeMaterial: alignment degree

 about 1 in 5 autocue sentences is completely dropped

Degree Autocue (%) Subtitle (%)

0 3607 20.74 12542 46.75

1 12382 71.19 13340 49.72

2 1313 7.55 901 3.36

3 83 0.48 41 0.15

4 8 0.05 6 0.02
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Material: alignment degreeMaterial: alignment degree

 sentence merging

 about 8% of the (short) autocue sentences are 
merged into a single subtitle

 cf. sentence aggregation

Degree Autocue (%) Subtitle (%)

0 3607 20.74 12542 46.75

1 12382 71.19 13340 49.72

2 1313 7.55 901 3.36

3 83 0.48 41 0.15

4 8 0.05 6 0.02
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Material: alignment degreeMaterial: alignment degree

 sentence splitting

 about 4% of the (long) autocue sentences are split 
into multiple subtitles

 cf. sentence simplification

Degree Autocue (%) Subtitle (%)

0 3607 20.74 12542 46.75

1 12382 71.19 13340 49.72

2 1313 7.55 901 3.36

3 83 0.48 41 0.15

4 8 0.05 6 0.02
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Material: alignment degreeMaterial: alignment degree

 sentence deletion, splitting and merging are important 
for automatic subtitling

 however, not part of sentence compression proper

 rather compression at the text level

 so we focus on one-to-one aligned sentences only

Degree Autocue (%) Subtitle (%)

0 3607 20.74 12542 46.75

1 12382 71.19 13340 49.72

2 1313 7.55 901 3.36

3 83 0.48 41 0.15

4 8 0.05 6 0.02
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Material: word compressionMaterial: word compression
 compression is partly obtained by word compression

 seven à 7

 United States à US

 Euro à €
 word compression is important for automatic subtitling

 however, not part of sentence compression proper

 rather compression at the lexical level
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Material: compression ratioMaterial: compression ratio

 so we measure compression in terms of tokens rather 
than characters

 this way we abstract from word compression

Compression Ratio CR=
#tokenssub
#tokensaut
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Material: compression ratioMaterial: compression ratio

histogram of CR distribution 
for 1-to-1 aligned sentences

 many autocue 
sentences not 
compressed (CR=0)

 some autocue 
sentences are in fact 
expanded (CR>0)

 we keep only sentences 
with CR<1 
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Material: parsing failuresMaterial: parsing failures

 0.2% sentences failed to pass the parser

 no parse tree, therefore no tree alignment, therefore 
no word alignment...

 so we skipped pairs containing a parsing failure  
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Material: disregardedMaterial: disregarded

To sum up, we:

 disregard autocue-subtitle pairs not 1-to-1 
aligned (because text compression)

 measure CR in terms of tokens
 disregard pairs with CR>=0
 disregard pairs with parsing errors
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Material: remainingMaterial: remaining

 we kept 5233 out of original 15289 pairs

Min Max Mean SD

Aut-tokens 2 43 15.41 5.48

Sub-tokens 1 29 10.26 3.72

CR 0.07 0.96 0.69 0.17
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1.  Introduction: sentence compression

2.  Material: subtitle corpus

3.  Analysis: observed compression phenomena
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Analysis: edit operationsAnalysis: edit operations
 Sentence compression can be regarded as a string 

transformation involving word deletion, substitution and 
insertion

 These edit operation can be deduced from the 
alignment of the syntax trees:

➔ if an autocue word is not aligned (to a subtitle 
word), then it was deleted

➔ if a subtitle word is not aligned (to an autocue 
word), then it was inserted 

➔ if different autocue and subtitle words are 
aligned, then substitution occurred

➔ if alignments cross each other, then the word 
order was changed
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Analysis: edit operationsAnalysis: edit operations

 Several advantages over calculating conventional string 
edit distance

 e.g. clearly distinguishes word order changes
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Analysis: deletionsAnalysis: deletions

 deletion is by far most frequent operation

 on average 7 words per sentence 

Min Max Sum Mean SD

Del 1 34 34728 6.64 4.57

Sub 0 6 4116 0.79 0.94

Ins 0 17 7768 1.48 1.78

Reorder 1688 0.32
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Analysis: substitutions & insertionsAnalysis: substitutions & insertions

 perhaps surprising, insertions are more frequent then 
substitutions 

Min Max Sum Mean SD

Del 1 34 34728 6.64 4.57

Sub 0 6 4116 0.79 0.94

Ins 0 17 7768 1.48 1.78

Reorder 1688 0.32
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Analysis: reorderingAnalysis: reordering

 word reordering is a binary variable

 about 1 in 3 sentences is reordered

Min Max Sum Mean SD

Del 1 34 34728 6.64 4.57

Sub 0 6 4116 0.79 0.94

Ins 0 17 7768 1.48 1.78

Reorder 1688 0.32
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Analysis: subsequencesAnalysis: subsequences

 the subtitle is a subsequence of the autocue if there are 
only deletions, i.e.

 no substitutions
 no insertions
 no word order changes

 only 16% of all autocue sentences are proper 
subsequences!

 does this imply that a deletion model can not account 
for 84% of the observed data? 
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Analysis: subsequencesAnalysis: subsequences

 No, because sentence compression is not a problem 
with a unique solution

 just like NLG, MT, ...
 There may very well exist semantically equivalant 

compressions which do satisfy the subsequence 
constraint

 So how many of the observed non-subsequences have 
subsequence alternatives? 
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Analysis: subsequencesAnalysis: subsequences
 manual exercise:

 for a random sample of 200 non-subsequences
 try to find a proper subsequence with the same 

meaning and the CR
 performed by one author; checked by second

Aut: in zijn residentie is het een chaos
     in his  residence  is it  a   chaos

Sub: chaos heerst in de  residentie
     chaos rules  in the residence

Seq: zijn residentie is een chaos
     his  residence  is a   chaos
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Analysis: subsequencesAnalysis: subsequences




Token-diff Count %

-2 4 2.0

-1 18 9.0

0 73 36.5

1 42 21.0

2 32 16.0

3 11 5.5

4 9 4.5

5 5 2.5

7 2 1.0

8 2 1.0

9 1 0.5

11 1 0.5

Difference in tokens between 
original and rewritten subtitle

 95 out of 200 (47%) 
can be rewritten as a 
subsequence with 
same CR (or smaller)

 16% of original data 
was already 
subsequence

 so 55% (16% + 47% 
of 84%) is compatible 
with a deletion model  
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Analysis: remaining problemsAnalysis: remaining problems

 even though the subsequence constraint is not as 
problematic as it seemed, about 45% of the observed 
data is still violates a deletion model

 our exercise reveals examples where insertion, 
substitution and word order changes are essential for 
obtaining the targeted  CR

 found three main categories:

1) obligatory word reordering

2) referring expressions

3) paraphrasing
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Analysis: obligatory reorderingAnalysis: obligatory reordering

 after deletion of a constituent, word reordering is often 
obligatory to preserve meaning and/or grammaticality

 observed in 24 out 200 sentences 

Aut: in PLAATS   heeft IEMAND   IETS      besloten 
     in location has   somebody something decided

Sub: *heeft IEMAND   IETS      besloten
      has   somebody something decided

     IEMAND  heeft IETS      besloten
     someone has   something decided
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Analysis: referring expressionsAnalysis: referring expressions

 referring expressions are often replaced by 

 a shorter, less precise expression
 a real anaphor

 requires context modeling: transcends the per-
sentence paradigm of sentence compression

 shows that generating referring expressions is relevant 
for an application like automatic subtitling

Aut: Many of them are deported by he Serbs in 
crammed trains

Sub: Refugees are deported by train
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Analysis: paraphrasingAnalysis: paraphrasing

 fixed lexical paraphrases

 since a few years à nowadays/recently/now
 paraphrases with slots

Aut: X neemt het initiatief tot oprichting van Y
     X takes the initiative to  raising    of  Y

Sub: X zet  Y op
     X sets Y up (“X raises Y”)
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Automatic paraphrase extractionAutomatic paraphrase extraction

 there is more and more  work on automatic paraphrase 
extraction(Lin & Pantel, 2001; Barzilay & Lee, 2003; Dolan et al; 2004; ...)

 how many of the paraphrases encountered in our 
sample can be automatically extracted from a text 
corpus?

 assuming a “perfect learner”, paraphrases must at 
least occur with a sufficient frequency in the text corpus 

 Twente News Corpus: 325M words
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Automatic paraphrase extractionAutomatic paraphrase extraction
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SummarySummary
 deletion model of sentence compression: 

 delete any subset of words from the input 
sentence 

 while retaining important information and 
grammaticality

 can account for only 16% of observed compressions in 
the subtitle domain

 rewriting to proper subsequences suggests it can 
account for about 55%

 for the remaining 45%, substitution, insertions (and 
word order changes) are crucial

 issues: fix word order, referring expressions, 
paraphrasing  



03-30-2009 ENLG2009 42

DiscussionDiscussion
 Is sentence compression an NLG task?

 no, because for my application X I am happy with 
a simple deletion model which accounts for 
roughly 55% of the cases

 yes, because I need more than deletion to 
account for the remaining 45% of the cases

 Sentence compression as part of NLG should include: 

 text revision / grammar-based transformation
 generating (shorter) paraphrases
 generating (shorter) referring expressions
 sentence splitting & merging (aggregation)
 ... 
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