Is sentence compression an NLG task?

Erwin Marsi, Emiel Krahmer
Tilburg University
The Netherlands

Iris Hendrickx, Walter Daelemans
Antwerp University
Belgium
Sentence compression

- **sentence compression** (reduction): summarizing a single sentence by removing information from it (Jing & McKeown, 2000)

- compressed sentence should retain most important information and remain grammatical

- applications include
 - as part of a full-blown text summarization system
 - automatic subtitling
 - displaying text on handheld devices
Compression as deletion

- **sentence compression as deletion:** drop any subset of words from the input sentence while retaining important information and grammaticality (Knight & Marcu, 2002)

- Two important properties
 - only deletions are allowed, no substitutions or insertions, and therefore no paraphrasing
 - word order is fixed

- Deletion models satisfy the **subsequence constraint:** words of the compressed sentence must be a subsequence of the input sentence
Deletion models

- Deletion models can be automatically learned from text corpora (Knight & Marcu, 2002)
 - probabilistic noisy channel model
 - shift-reduce parser + decision tree model

- Most follow up work on data-driven sentence compression adheres to the subsequence constraint
 (Minh Le & Horiguchi, 2003; Vandeghinste & Pan, 2004; Turner & Charniak, 2005; Clarke & Lapata, 2006; Zajic et al., 2007; Clarke & Lapata, 2008)
Is sentence compression an NLG task?

- Though it is a form of text-to-text generation, there is no real generation component in deletion models.
- Is sentence compression therefore *not* an NLG task?
Is sentence compression an NLG task?

- Intuitively, the subsequence constraint seems a (convenient) over-simplification.
- We suspect that in reality sentence compression requires:
 - transformations beyond word deletions
 - linguistic knowledge and resources typical to NLG
- To find out, we studied “real-life” sentence compression in the domain of subtitling.
Overview

1. Introduction: sentence compression
2. Material: subtitle corpus
3. Analysis: observed compression phenomena
4. Summary / Discussion
Material: domain

- source: subtitles from news broadcasts of the Dutch public television channel
- presentation space is limited:
 - 690 – 780 chars/minute
- subtitles cannot be verbatim transcription
- subtitles are often compressed form of original
- a form of parallel text.
 - **aut**: autocue text
 - **sub**: subtitle text
Subtitle corpus originally collected for studying automatic subtitling (Vandeghinste & Tjong Kim Sang, 2004)
- automatically tokenized
- automatically aligned at sentence level
- sentence alignments manually checked
Material: further processing

- subtitle corpus has become part of DAESO corpus
 - monolingual treebank of parallel/comparable Dutch text [Marsi & Krahmer, 2007]
- all sentences syntactically parsed
- syntax trees manually aligned
 - alignment of similar syntactic nodes
 - labeled with semantic similarity relations
- current work only uses the word alignments
Material: aligned trees
Material: alignment degree

<table>
<thead>
<tr>
<th>Degree</th>
<th>Autocue</th>
<th>(%)</th>
<th>Subtitle</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3607</td>
<td>20.74</td>
<td>12542</td>
<td>46.75</td>
</tr>
<tr>
<td>1</td>
<td>12382</td>
<td>71.19</td>
<td>13340</td>
<td>49.72</td>
</tr>
<tr>
<td>2</td>
<td>1313</td>
<td>7.55</td>
<td>901</td>
<td>3.36</td>
</tr>
<tr>
<td>3</td>
<td>83</td>
<td>0.48</td>
<td>41</td>
<td>0.15</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0.05</td>
<td>6</td>
<td>0.02</td>
</tr>
</tbody>
</table>

- **alignment degree**: number of other sentences that a sentence is aligned to
Material: alignment degree

<table>
<thead>
<tr>
<th>Degree</th>
<th>Autocue</th>
<th>(%)</th>
<th>Subtitle</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3607</td>
<td>20.74</td>
<td>12542</td>
<td>46.75</td>
</tr>
<tr>
<td>1</td>
<td>12382</td>
<td>71.19</td>
<td>13340</td>
<td>49.72</td>
</tr>
<tr>
<td>2</td>
<td>1313</td>
<td>7.55</td>
<td>901</td>
<td>3.36</td>
</tr>
<tr>
<td>3</td>
<td>83</td>
<td>0.48</td>
<td>41</td>
<td>0.15</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0.05</td>
<td>6</td>
<td>0.02</td>
</tr>
</tbody>
</table>

- almost half of the subtitles has no corresponding autocue because
 - in a foreign language
 - live interviews
Material: alignment degree

<table>
<thead>
<tr>
<th>Degree</th>
<th>Autocue</th>
<th>(%)</th>
<th>Subtitle</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3607</td>
<td>20.74</td>
<td>12542</td>
<td>46.75</td>
</tr>
<tr>
<td>1</td>
<td>12382</td>
<td>71.19</td>
<td>13340</td>
<td>49.72</td>
</tr>
<tr>
<td>2</td>
<td>1313</td>
<td>7.55</td>
<td>901</td>
<td>3.36</td>
</tr>
<tr>
<td>3</td>
<td>83</td>
<td>0.48</td>
<td>41</td>
<td>0.15</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0.05</td>
<td>6</td>
<td>0.02</td>
</tr>
</tbody>
</table>

- about 1 in 5 autocue sentences is completely dropped
Material: alignment degree

<table>
<thead>
<tr>
<th>Degree</th>
<th>Autocue</th>
<th>(%)</th>
<th>Subtitle</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3607</td>
<td>20.74</td>
<td>12542</td>
<td>46.75</td>
</tr>
<tr>
<td>1</td>
<td>12382</td>
<td>71.19</td>
<td>13340</td>
<td>49.72</td>
</tr>
<tr>
<td>2</td>
<td>1313</td>
<td>7.55</td>
<td>901</td>
<td>3.36</td>
</tr>
<tr>
<td>3</td>
<td>83</td>
<td>0.48</td>
<td>41</td>
<td>0.15</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0.05</td>
<td>6</td>
<td>0.02</td>
</tr>
</tbody>
</table>

- **sentence merging**
 - about 8% of the (short) autocue sentences are merged into a single subtitle
 - cf. sentence aggregation
Material: alignment degree

<table>
<thead>
<tr>
<th>Degree</th>
<th>Autocue</th>
<th>(%)</th>
<th>Subtitle</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3607</td>
<td>20.74</td>
<td>12542</td>
<td>46.75</td>
</tr>
<tr>
<td>1</td>
<td>12382</td>
<td>71.19</td>
<td>13340</td>
<td>49.72</td>
</tr>
<tr>
<td>2</td>
<td>1313</td>
<td>7.55</td>
<td>901</td>
<td>3.36</td>
</tr>
<tr>
<td>3</td>
<td>83</td>
<td>0.48</td>
<td>41</td>
<td>0.15</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0.05</td>
<td>6</td>
<td>0.02</td>
</tr>
</tbody>
</table>

- sentence splitting
 - about 4% of the (long) autocue sentences are split into multiple subtitles
 - cf. sentence simplification
sentence deletion, splitting and merging are important for automatic subtitling

however, not part of sentence compression proper

 rather compression at the text level

so we focus on one-to-one aligned sentences only
Material: word compression

- compression is partly obtained by word compression
 - *seven* \rightarrow 7
 - *United States* \rightarrow *US*
 - *Euro* \rightarrow €
- word compression is important for automatic subtitling
- however, not part of sentence compression proper
 - rather compression at the lexical level
so we measure compression in terms of tokens rather than characters

\[
\text{Compression Ratio (CR)} = \frac{\#\text{tokens}_{\text{sub}}}{\#\text{tokens}_{\text{aut}}}
\]

this way we abstract from word compression
Material: compression ratio

histogram of CR distribution for 1-to-1 aligned sentences

- many autocue sentences not compressed (CR=0)
- some autocue sentences are in fact expanded (CR>0)
- we keep only sentences with CR<1
Material: parsing failures

- 0.2% sentences failed to pass the parser
- no parse tree, therefore no tree alignment, therefore no word alignment...
- so we skipped pairs containing a parsing failure
To sum up, we:

- disregard autocue-subtitle pairs *not* 1-to-1 aligned (because text compression)
- measure CR in terms of tokens
- disregard pairs with CR\(\geq 0\)
- disregard pairs with parsing errors
we kept 5233 out of original 15289 pairs

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aut-tokens</td>
<td>2</td>
<td>43</td>
<td>15.41</td>
<td>5.48</td>
</tr>
<tr>
<td>Sub-tokens</td>
<td>1</td>
<td>29</td>
<td>10.26</td>
<td>3.72</td>
</tr>
<tr>
<td>CR</td>
<td>0.07</td>
<td>0.96</td>
<td>0.69</td>
<td>0.17</td>
</tr>
</tbody>
</table>
Overview

1. Introduction: sentence compression

2. Material: subtitle corpus

3. Analysis: observed compression phenomena

4. Summary / Discussion
Analysis: edit operations

- Sentence compression can be regarded as a string transformation involving word deletion, substitution and insertion

- These edit operations can be deduced from the alignment of the syntax trees:
 - if an autocue word is *not* aligned (to a subtitle word), then it was deleted
 - if a subtitle word is *not* aligned (to an autocue word), then it was inserted
 - if different autocue and subtitle words are aligned, then substitution occurred
 - if alignments cross each other, then the word order was changed
Analysis: edit operations

- Several advantages over calculating conventional string edit distance
 - e.g. clearly distinguishes word order changes
Analysis: deletions

<table>
<thead>
<tr>
<th>Operation</th>
<th>Min</th>
<th>Max</th>
<th>Sum</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Del</td>
<td>1</td>
<td>34</td>
<td>34728</td>
<td>6.64</td>
<td>4.57</td>
</tr>
<tr>
<td>Sub</td>
<td>0</td>
<td>6</td>
<td>4116</td>
<td>0.79</td>
<td>0.94</td>
</tr>
<tr>
<td>Ins</td>
<td>0</td>
<td>17</td>
<td>7768</td>
<td>1.48</td>
<td>1.78</td>
</tr>
<tr>
<td>Reorder</td>
<td></td>
<td></td>
<td>1688</td>
<td>0.32</td>
<td></td>
</tr>
</tbody>
</table>

- deletion is by far most frequent operation
- on average 7 words per sentence
Analysis: substitutions & insertions

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>Sum</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Del</td>
<td>1</td>
<td>34</td>
<td>34728</td>
<td>6.64</td>
<td>4.57</td>
</tr>
<tr>
<td>Sub</td>
<td>0</td>
<td>6</td>
<td>4116</td>
<td>0.79</td>
<td>0.94</td>
</tr>
<tr>
<td>Ins</td>
<td>0</td>
<td>17</td>
<td>7768</td>
<td>1.48</td>
<td>1.78</td>
</tr>
<tr>
<td>Reorder</td>
<td>1688</td>
<td></td>
<td></td>
<td>0.32</td>
<td></td>
</tr>
</tbody>
</table>

- perhaps surprising, insertions are more frequent than substitutions
Analysis: reordering

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>Sum</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Del</td>
<td>1</td>
<td>34</td>
<td>34728</td>
<td>6.64</td>
<td>4.57</td>
</tr>
<tr>
<td>Sub</td>
<td>0</td>
<td>6</td>
<td>4116</td>
<td>0.79</td>
<td>0.94</td>
</tr>
<tr>
<td>Ins</td>
<td>0</td>
<td>17</td>
<td>7768</td>
<td>1.48</td>
<td>1.78</td>
</tr>
<tr>
<td>Reorder</td>
<td></td>
<td></td>
<td>1688</td>
<td>0.32</td>
<td></td>
</tr>
</tbody>
</table>

- word reordering is a binary variable
- about 1 in 3 sentences is reordered
Analysis: subsequences

- the subtitle is a *subsequence* of the autocue if there are only deletions, i.e.
 - no substitutions
 - no insertions
 - no word order changes
- only 16% of all autocue sentences are proper subsequences!
- does this imply that a deletion model can *not* account for 84% of the observed data?
Analysis: subsequences

- No, because sentence compression is not a problem with a unique solution
 - just like NLG, MT, ...
- There may very well exist semantically equivalent compressions which do satisfy the subsequence constraint
- So how many of the observed non-subsequences have subsequence alternatives?
Analysis: subsequences

- manual exercise:
 - for a random sample of 200 non-subsequences
 - try to find a proper subsequence with the same meaning and the CR
 - performed by one author; checked by second

Aut: in zijn residentie is het een chaos
in his residence is it a chaos

Sub: chaos heerst in de residentie
chaos rules in the residence

Seq: zijn residentie is een chaos
his residence is a chaos
Analysis: subsequences

Difference in tokens between original and rewritten subtitle

<table>
<thead>
<tr>
<th>Token-diff</th>
<th>Count</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>4</td>
<td>2.0</td>
</tr>
<tr>
<td>-1</td>
<td>18</td>
<td>9.0</td>
</tr>
<tr>
<td>0</td>
<td>73</td>
<td>36.5</td>
</tr>
<tr>
<td>1</td>
<td>42</td>
<td>21.0</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
<td>16.0</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>5.5</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>4.5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

- 95 out of 200 (47%) can be rewritten as a subsequence with same CR (or smaller)
- 16% of original data was already subsequence
- so 55% (16% + 47% of 84%) is compatible with a deletion model
Analysis: remaining problems

- even though the subsequence constraint is not as problematic as it seemed, about 45% of the observed data is still violates a deletion model
- our exercise reveals examples where insertion, substitution and word order changes are essential for obtaining the targeted CR
- found three main categories:
 1) obligatory word reordering
 2) referring expressions
 3) paraphrasing
Analysis: obligatory reordering

- after deletion of a constituent, word reordering is often obligatory to preserve meaning and/or grammaticality
- observed in 24 out 200 sentences

Aut: in PLAATS heeft IEMAND IETS besloten
 in location has somebody something decided

Sub: *heeft IEMAND IETS besloten
 has somebody something decided

IEMAND heeft IETS besloten
someone has something decided
Analysis: referring expressions

- referring expressions are often replaced by
 - a shorter, less precise expression
 - a real anaphor
- requires context modeling: transcends the per-sentence paradigm of sentence compression
- shows that generating referring expressions is relevant for an application like automatic subtitling

Aut: Many of them are deported by the Serbs in cramped trains

Sub: Refugees are deported by train
Analysis: paraphrasing

- fixed lexical paraphrases
 - *since a few years* → *nowadays/recently/now*

- paraphrases with slots

 Aut: X neemt het initiatief tot oprichting van Y
 X takes the initiative to raising of Y

 Sub: X zet Y op
 X sets Y up ("X raises Y")
Automatic paraphrase extraction

- There is more and more work on automatic paraphrase extraction (Lin & Pantel, 2001; Barzilay & Lee, 2003; Dolan et al., 2004; ...)

- How many of the paraphrases encountered in our sample can be automatically extracted from a text corpus?

- Assuming a “perfect learner”, paraphrases must at least occur with a sufficient frequency in the text corpus.

- Twente News Corpus: 325M words
Automatic paraphrase extraction
Overview

1. Introduction: sentence compression
2. Material: subtitle corpus
3. Analysis: observed compression phenomena
4. Summary / Discussion
Summary

- deletion model of sentence compression:
 - delete any subset of words from the input sentence
 - while retaining important information and grammaticality
- can account for only 16% of observed compressions in the subtitle domain
- rewriting to proper subsequences suggests it can account for about 55%
- for the remaining 45%, substitution, insertions (and word order changes) are crucial
- issues: fix word order, referring expressions, paraphrasing
Discussion

- Is sentence compression an NLG task?
 - no, because for my application X I am happy with a simple deletion model which accounts for roughly 55% of the cases
 - yes, because I need more than deletion to account for the remaining 45% of the cases

- Sentence compression as part of NLG should include:
 - text revision / grammar-based transformation
 - generating (shorter) paraphrases
 - generating (shorter) referring expressions
 - sentence splitting & merging (aggregation)
 - ...